Wave Motion and String Waves Concept Page - 4

Example
Particle velocity of a given travelling longitudinal wave
Example: The velocity of sound is  vs in air. If density of air is increased twice then find the new velocity of sound.

Solution:
v=γpϱ
So, v1ϱ
or, v1v2=1/ϱ11/ϱ2
v1v2=ϱ2ϱ1
vsv2=2ϱϱ
v2=vs2
Example
Solve Problems involving particle acceleration of a given travelling longitudinal wave
Example: A source S of sonic oscillations of frequency 2200 Hz and a receiver R are located on the x-axis. At the moment t=0 the source starts moving away from the receiver with an acceleration 1.7 m/s2. The velocity of sound in air is 340 m/s. Find the speed of the source if the sound is received by this receiver after 21 s.

Solution:
The source starts from R and reaches P after 21 s.
Let T be the total time taken by source to go to P(t1) from R and the sound to go from P to R(t2sec).
So, T=t1+t2=21
Now, s= distance between R and P=12at12, where a is the acceleration of the source.
s is also equal to vt2, where v is the velocity of sound.
So, s=12at12=vt2=340t2=340(21t1)
 12×1.7×t12=340(21t1)
or, t12+400t18400=0
or, (t1+420)(t120)=0
t1=20 s
So the source travels for 20 s from receiver and attained a velocity:
v=u+at=0+1.7×20=34 m/s
Definition
Sinusoidal form of a wave travelling with a constant speed
y(x,t)=asin(kxωt+ϕ)
where a is the amplitude of the wave
y is the displacement from mean position
x is the position of an element along the wave
ϕ is the initial phase angle
k is the angular wave number
Example
Speed of a sinusoidally travelling wave
The displacement y of a wave travelling in the x-direction is given by y=104sin(600t2x+π2) metre. Where x is expressed in metre and t in second. Calculate the speed of the wave motion.y=104sin(600t2x+π2)
y=Asin(ωtkx+ϕ)
ω=600
k=2
V=ωk
=300 m/s
Example
Find particle acceleration of a given travelling transverse wave
Example: A transverse wave along a string is given by  y=2sin(2π(3tx)+π4), where  x  and  y  are in cm and t is in second. What is the acceleration of a particle located at  X=4cm   at t=1 sec ?

Solution:
y=2 sin(6πt2πx+π4)
vp=dydt=12π cos(6πt2πx+π4)

ap=dvpdt=72π2 sin(6πt2πx+π4)
At x=4, t=1
ap=72π2 sin(6π8π+π4)=72π2×12=362π2 cm/sec2
Example
Potential energy per unit length at a given point in a travellling string wave
Example: A particle of mass is executing oscillations about. the origin on the x-axis. Its potential energy is V(x)=k|x|3, where k is a positive constant. If the amplitude of oscillation is a, then find its time period T ?

Solution:
V(x)=k|x|3
Since, F=dV(x)dx=3k|x|2            ......(1)
x=asin(ωt)
This equation always fits to the differential equation:
d2xdt2=ω2x
or md2xdt=mω2x
F=mω2x.........(2)
Equation (1) and (2) give:
3k|x|2=mω2x
ω=3kxm=3kam[sin(ωt)]1/2
ωa
T1a
Example
Derive and find kinetic energy per unit length at a given point in a travelling string wave
A uniform string of length / is fixed at both ends such that tension T is produced in it. The string is excited to vibrate with maximum displacement amplitude ao. The maximum kinetic energy of the string for its fundamental tone is given as a02π2Txl. Find x.

Solution:
Since tension on the string is T so the velocity of the wave should be v=Tm, where m is mass per unit length.
Since frequency is n=vλ  there for the frequency of the fundamental tone should be n1=12lTm
Now consider an elemental length of a string at a distance x of size dx.
So its mass is: dm=mdx
Its oscillation energy is given by 12(mdx)a2(2πn1)2 =a02π2T2l2sin2(2πx2l)dx      
[n1=12lTm ]
Integrating this we get, total energy as a02π2T4l
This gives us x=4

BookMarks
Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10
Page 11  Page 12  Page 13  Page 14  Page 15

0 Comments

Post a Comment