Wave Motion and String Waves Concept Page - 5

Example
Derive and find kinetic energy per unit length at a given point in a travelling string wave
A uniform string of length / is fixed at both ends such that tension T is produced in it. The string is excited to vibrate with maximum displacement amplitude ao. The maximum kinetic energy of the string for its fundamental tone is given as a02π2Txl. Find x.

Solution:
Since tension on the string is T so the velocity of the wave should be v=Tm, where m is mass per unit length.
Since frequency is n=vλ  there for the frequency of the fundamental tone should be n1=12lTm
Now consider an elemental length of a string at a distance x of size dx.
So its mass is: dm=mdx
Its oscillation energy is given by 12(mdx)a2(2πn1)2 =a02π2T2l2sin2(2πx2l)dx      
[n1=12lTm ]
Integrating this we get, total energy as a02π2T4l
This gives us x=4
Definition
Potential energy in a travelling string wave
Potential energy/meter=12T(yx)2dx=12TA2k2cos2(kxωt)dx
The average potential energy per meter of string is=14TA2k2=14μω2A2 since ω=vk and v2=Tμ
Example
Derive and find total kinetic energy in one wavelength in a travelling string wave
Example:
A uniform string of length l is fixed at both ends such that tension T is produced in it. The string is excited to vibrate with maximum displacement amplitude ao. The kinetic energy of the string for its first overtone is given as a02π2Txl. Find x

Solution:
Displacement equation of a stationary wave          y=2Asin(knx)sin(wnt)
First overtone means   n=2
Kinetic energy of a small element      dE=12(μdx)(dydt)2
   dE=12(μdx)(2Asin(knx))2×wn2cos(wnt)
   dE=2A2wn2μsin2(knx)dx           .........(1)
Given :        A=ao  
 Also first overtone frequency          ν2=22lTμ      
      ν22=Tμl2
As      wn=2πν2

   wn2=4π2ν22=4π2×Tμl2

Also    kn=nπx2l=2πx2l=πxl

Putting these values in  (1) we get,      
  dE=2ao2μ×(4π2×Tμl2)sin2(knx)dx

   dE=8ao2π2Tl2sin2(πxl)dx

Total kinetic energy        E=8ao2π2Tl2sin2(πxl)dx

   E=8ao2π2Tl20l1cos(2πx/l)2dx   
E=8ao2π2Tl2×12×[x|0lsin(2πx/l)(2πx/2)|0l]   
E=8ao2π2Tl2×12×[l0]

     E=4ao2π2Tl     x=4
Example
Power delivered at a point and total power delivered during one time period in a travelling string wave
Example: A stretched rope having linear mass density 5×102 kgm1 is under a tension of 80N. Find the power that has to be supplied to the rope to generate harmonic waves at a frequency of 60 Hz and an amplitude of 6 cm ?

Solution:
Velocity v=Tμ=805×102=40 ms1
Power P=12μω2A2v
                =2π2μvA2f2
                =2π2×5×102×40×36×104×(60)2
                512 W
Definition
Define intensity of a travelling wave and use its relation with amplitude, frequency or distance from source
The Intensity of waves is defined as the power delivered per unit area. Intensity of wave is proportional to the square of amplitude of the wave. 
Intensity = PowerArea
Intensity = Po22ρv ; where Po=ρvAω
ρv=z= acoustic impedance; A= amplitude; ω= angular frquency;ρ= density of material; v= wave speed

BookMarks
Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10
Page 11  Page 12  Page 13  Page 14  Page 15

0 Comments

Post a Comment