Rotational Dynamics Concepts Page - 3

Example
Moment of inertia of a rectangular plate
Example: The mass of a rectangular plate of uniform thickness is M and its
length and breadth are L and L2 respectively. What is the
expression for moment of inertia of same plate about an axis
perpendicular to plane of plate and passing through one of four corners?

Solution:
Moment of inertia of rectangle I=M(a2+b2)12 , now b=L/2. So we get Icm=5ML248Now distance of center from the corner is d=(L/2)2+(L/4)2=5L4,So using parallel axis theorem I=Icm+Md2=5ML248+M(5L)16I=5ML212
Example
Masses attached to fixed pulleys with given moment of inertia
Example: Two blocks of masses 1 kg and 2 kg are suspended at the end of a light string passing over a frictionless pulley of mass 4 kg and radius 10 cm.
When the masses are released, what will the acceleration of the masses?

Solution: Refer to the diagram.
For the two blocks the equations of motion are:
T1m1g=m1a  ......(1)
m2gT2=m2a  ......(2)

For the pulley, equation of motion for  rotation is( since the pulley only rotates)
net torque τnet=Iα
T2RT1R=12MR2α    ....(3)
Dividing (3) by R and adding (1) and (2) to it we get,
m2gm1g=m2a+m1a+M2Rα
m2gm1g=m2a+m1a+M2a
a=m2m1m2+m1+M2g    .....(4)
Substituting m1=1m2=2, and M=4 and R=10cm=0.1m in eqn(4), we get
a=212+1+42g=g5
Example
Masses attached to multiple fixed pulleys with defined moment of inertia
Example: In the arrangement shown in figure above, a weight A possesses mass m, a pulley B possesses mass M. Also known are the moment of inertia I of the pulley relative to its axis and the radii of the pulley R and 2R. The mass of the threads is negligible.  If the acceleration of the weight A after the system is set free is w=b(M+bm)g(M+9m+IR2), find the value of b.

Solution:Let us depict the forces acting on the pulley and weight A, and indicate positive direction for x and φ as shown in figure below. For the cylinder from the equation Fx=mwcx and Ncz=Icβz, we get
Mg+TA2T=Mwc ....(1)
and 2TR+TA(2R)=Iβ=IwcR .....(2)
For the weight A from the equation
Fx=mwx
mgTA=mwA ......(3)
As there is no slipping of the threads on the pulleys,
wA=wc+2βR=wc+2wc=3wc .....(4)
Simultaneous solutions of above four equations gives,
wA=3(M+3m)g(M+9m+IR2)
Definition
Clockwise and Anticlockwise Moments
Conventionally, if the effect on the body is to turn it anticlockwise, moment of force is called the anticlockwise moment and it is taken positive while if the effect on the body is to turn it clockwise, the moment of force is called the clockwise moment and it is taken negative.
Definition
Units of Moment of Force
1 Nm=105 dyne×102 cm
           =107 dyne cm
1 kgf×1m=9.8 Nm
1 gf×1cm=980 dyne cm
Definition
Moment of Force or Torque
Torque or moment of force is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Just as a force is a push or a pull, a torque can be thought of as a twist to an object.
τ=r×F
Example
Net torque due to internal forces equals zero for a rigid body
Example
Equation of torque about point of projection for a projectile
Example:
What is the average torque on a projectile of mass m, initial speed u and angle of projection θ between initial and final positions, about the point of projection?

Solution:Torque at a general point = Horizontal distance covered × m g (as we only take r perpendicular to g)
 τ=mg×ucosθt ......(1)
t=usinθg
 Substituting t in (1), we get 

BookMarks
Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10
Page 11  Page 12

0 Comments

Post a Comment