Example
Gravitational field due to a continuous mass system with variable mass density
Example: The earth does not have a uniform density; it is most dense at its centre and least dense at its surface. Anapproximation of its density is , where kg/m and is the distance from the centre of earth. Use for the radius of earth approximated as a sphere,Imagine dividing the earth into concentric, elementary spherical shells. Each shell has radius , thickness ,volume and mass . By integrating from zero to the mass of earth can be found. Knowing the fact that a uniform spherical shell gives no contribution to acceleration due to gravity inside it,we can also find as a function of . What is the gravitational field due this mass of the earth?
Solution:
Mass of earth:
Gravitational field:
Solution:
Mass of earth:
Gravitational field:
Example
Gravitational potential due to a continuous mass

Example:
A thin uniform annular disc (see figure) of mass has outer radius and inner radius . Find the work required to take a unit mass from point on its axis to infinity.Solution:
We know that the work required to take a unit mass from P to infinity =, where is the gravitational potential at P due to the disc. To find , we divide the disc into small elements, each of thickness . Consider one such element at a distance from the center of the disc as shown.
Mass of the element
Thus
Putting ,we get or
When
When
or
A thin uniform annular disc (see figure) of mass has outer radius and inner radius . Find the work required to take a unit mass from point on its axis to infinity.Solution:
We know that the work required to take a unit mass from P to infinity =, where is the gravitational potential at P due to the disc. To find , we divide the disc into small elements, each of thickness . Consider one such element at a distance from the center of the disc as shown.
Mass of the element
Thus
Putting ,we get or
When
When
or
Example
Force between continuous bodies

Example:
Find the gravitational force of attraction between a uniform sphere of mass and a uniform rod of length and mass oriented as shown.
Solution:The force of attraction between sphere and shaded position
Find the gravitational force of attraction between a uniform sphere of mass and a uniform rod of length and mass oriented as shown.
Solution:The force of attraction between sphere and shaded position
Definition
Gravitational Field due to a point mass

Gravitational field due to a point mass is given by the following relation:
Definition
Gravitational Field due to solid sphere

Gravitational Field at an external point :
Gravitational Field at an internal point :
(Where 'R' is radius of earth.)
Gravitational Field at an internal point :
(Where 'R' is radius of earth.)
Diagram
Graph for gravitational field due to Solid Sphere

Graph for gravitational field due to solid sphere:
Example
Vector sum of gravitational forces on a mass due to a system of masses
Let's consider a mass is situated at the centre of a circle. Two more equal masses are at the diametric opposite points on the circle. Then net force on mass will be:
-
Equal forces in opposite directions will cancel out each other.
-
Equal forces in opposite directions will cancel out each other.
Definition
Gravitational Field due to a uniform ring

Gravitational Field due to a uniform ring is given by:
Definition
Define and use analogous gauss's law for gravitation

Gauss's Law for Gravity:
The total electric flux out of a region was related to the charge in that region:
There is an exactly analogous formula for the gravitational field:
If inside a spherical region there are three masses and then what's the gravitational flux from the closed region in this case?
are masses closed inside the region.
The total electric flux out of a region was related to the charge in that region:
There is an exactly analogous formula for the gravitational field:
If inside a spherical region there are three masses and then what's the gravitational flux from the closed region in this case?
are masses closed inside the region.
Definition
Gravitational Potential (V)
The gravitational potential (V) is the gravitational potential energy (U) per unit mass: where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
![]() |
BookMarks |
0 Comments
Post a Comment