Electrostatics Concept Page - 11

Example
Energy required in changing geometrical configuration of a charged body
Example:
An isolated metal sphere of radius r is given a charge q. Calculate the energy required to change the radius to r/2 and same charge.Solution:
First, finding the potential energy in creating the sphere,
Let at any instant q be the charge on the sphere
Now potential of the sphere =kqr
Work done to add a dq charge to this sphere
dw=kqrdq     (As V=0)
 total work done to accumulate q charge is
dw=0qkqrdq
w=kr[q22]0q
w=kq22r
w=q24πε0r2
w=q28πε0r
Potential energy of the sphere initially is Ui=q28πε0r
Potential energy of the sphere finally is Uf=q24πε0r
Energy required to change the configuration, W=UfUi=q28πε0r
Formula
Potential due to a charged non-conducting sphere
V=14πϵ0Q(3R2r2)2R3             (r<R)
V=kQR            (r=R)
V=kQr              (r>R)
where k=14πϵ0R is the radius of the sphere and r is the distance from the centre
Diagram
Plot of potential for a charged non-conducting sphere
Example
Potential of a uniformly charged cylinder
Example:
Calculate the electric potential due to an infinitely long uniformly charged cylinder with charge density ρo and radius R, inside and outside the cylinder. Assume potential at axis is zero.
Solution:
For r<R,
      Electric field using Gauss Law, E=ρr2εo
      Electric potential, dV=E.dr
                                  VrV0=0rρr2εodr
                                  Vr0=ρr24εo
For r=R,VR=ρR24εo
For r>R,
      Electric field using Gauss Law, E=ρR22rεo
      Electric potential, dV=E.dr
                                  VrVR=RrρR22rεodr
                                  Vr=ρR24εoρR22εoln(rR)
Formula
Discuss and explain the relation between electric field intensity and potential
The relationship between electric field E and scalar potential ϕ is given as:
E=ϕ, where =gradient operator.
Example
Integral relationship between electric field and potential
The potential at the origin is zero due to electric field E¯=20i^+30j^NC1 . The potential at point P(2m, 2m) is:
We know Vr1Vr2=r2r1Edr
Vx0Vx2=2020dr
Vx2=40
Vy0Vy2=2030dr
Vy2=60
total V=Vx2+Vy2=100V
Example
Differential relationship between electric field and potential
In the figure shown, the electric field intensity at r=1 mr=6 mr=9 m in Vm1 is:We know: E=dVdr
Given plot shows the variation of V against r.
dVdr is the slope of graph
Since, slope at (1,5) is 5, therefore E|r=1 m=5 Since, slope at (6,10) is 0, therefore E|r=6 m=0Since, slope at (9,5) is 5, therefore  Er=9 m=5
Example
Electric field due to a system of point charges
An infinite number of charges each of magnitude q are placed on x - axis at distances of 1,2, 4, 8, ... meter from the origin. The intensity of the electric field at origin is:We know E=kqr2
Now electric field at origin is given as Eo=kq12+kq22+kq42+kq82+
=kq(1+122+124+126+)
We know in G. P sum to infinite =a1r
=kq(1114)
=q4πε043=q3πε0.
Diagram
Gravitational Equipotential Surface
Gravitational equipotential surface is the locus of points which are at the same potential. Electric field in a space is always perpendicular to the equipotential surfaces and zero along the plane of equipotential surfaces.
Example:
For a point charge, V=Q4πεoR
V= constant, R= constant.
Hence for a point charge, equipotential surfaces are concentric spheres centered at the point charge.
Definition
Equipotential surfaces
Surfaces having same potential are termed as equipotential surfaces
The properties of equipotential surfaces can be summarized as follows:
  • The electric field lines are normal to the equipotentials and are directed from higher to lower potentials. 
  • By symmetry, the equipotential surfaces produced by a point charge form a family of concentric spheres, and for a constant electric field, a family of planes normal to the field lines. 
  • The tangential component of the electric field along the equipotential surface is zero, otherwise non-vanishing work would be done to move a charge from one point on the surface to the other.
  • Work done in moving a particle along an equipotential surface is zero. 

BookMarks
Page 1  Page 2  Page 3  Page 4  Page 5  Page 6  Page 7  Page 8  Page 9  Page 10
Page 11  Page 12  Page 13  Page 14  Page 15

0 Comments

Post a Comment