Capacitors Concept Page - 6

Definition
Dielectric constant
The ratio of permittivity of a medium to the permittivity of free space is known as the dielectric constant or relative permittivity of the medium. It is denoted by εr or K.
K=εεo
Note:
K1 where K=1 for free space
Formula
Parallel plate capacitor with a dielectric
The capacitance C of a parallel plate capacitor with single dielectric slab between plates is :
C=Kϵ0Ad=KC0 
where C0 is the capacitance without the dielectric.
Formula
Dielectrics in series
1C=1C1+1C2=2k1k2k1+k2C0
where k1k2 are the dielectric constants 
Example
Capacitance of parallel plate capacitor with a combination of dielectrics
Example:
In the figure shown, find the effective capacitance across P and Q. (Area of each plate is α)Solution:
The above arrangement acts as the K1 capacitor in parallel with K2 and K3 which are in series.
C1=k1ε0α2d,C2=k2ε0α22d,C3=k3ε0α22d
C2 and C3 are in series.
1Ceff=1C2+1C3
1Ceff=dk2ε0α+dk3ε0α=Ceff=ε0αd(k2k3k2+k3)
C1 is in parallel with Ceff
 Total capacitance C=k1ε0α2d+εoαd(k2k3k2+k3)
C=ε0αd(k12+k2k3k2+k3)
Definition
variable permittivity
Example : A parallel plate capacitor having square plates of edge and plate separation d. The gap between the plates is filled with a dielectric of dielectric constant K which varies parallel to an edge as K=K0+αx where K and α are constants and x is the distance from the left end.
Solution: Consider a small strip of width dx at a separation x from the left end with area of adx. Its capacitance is dC=(K0+αx)ϵ0adxd.
The given capacitor may be divided into such strips with x varying from 0 to a. All these strips are connected to parallel. The capacitance of the given capacitor is,
C=0a(K0+αx)ϵ0adxd=ϵ0a2d(K0+aα2)
Formula
Cylindrical capacitor with dielectric
Cl=2πϵ0log(ro/ri)(α1ε1+α2ε2)
where rori are the outer and inner radius of the cylinder respectively, α1α2 are the filling fractions of ε1 and ε2 respectively.
Example
Force on a dielectric slab in a conductor
Example:A parallel plate capacitor is made of two plates of length l, width w and separated by distance d. A dielectric slab (dielectric constant K) that fits exactly between the plates is held near the edge of the plates. It is pulled into the capacitor by a force F=Ux where U is the energy of the capacitor when dielectric is inside the capacitor up to distance x (See figure). If the charge on the capacitor is Q then the force on the dielectric when it is near the edge is :

Solution:
Let at any moment of time when slab traveled distance x,
Capacitance due to dielectric slab, 
Cd=KϵoA/d=Kϵo(wx)/d
Capacitance where slab is not there:
C=ϵo(w(lx))/d
Net capacitance will be:
C=wϵod(l+(k1)x)

Now, energy U is:

U=Q2C=Q2d2wϵol(11+(K1)xl)

Force, F=dU/dx, therefore,

F=Q2d2wϵol2(K1)





Definition
Electric Displacement
Electric displacement is given as:
D=εoE+P
where:
E: External electric field
P: Polarisation 
εo: Permittivity of free space

It is related to the free charge density by, D.n^=σ

Note:
1. Electric Displacement is directly related to the free surface charge density in a medium instead of the electric field.
2. On change of medium of an electric field, electric field changes but electric displacement remains the same.
Definition
Relationship between Electric Displacement and Electric field
Electric displacement is given by:
D=εoKE
where
εoK: Permittivity of the medium
Formula
Force between the plates of a capacitor
The capacitance C is given by :
C=ϵoAd
Energy stored in caapcitor is U=12CV2
                                                   =AϵoN22d
Differentiating this with respect to distance d:
dUdd=ϵoAV22d2
Force of attraction=dUdd
and Q=CV, so

BookMarks
Page 1  Page 2  Page 3  Page 4  Page 5  Page 6

0 Comments

Post a Comment